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Abstract. The problem of first passage time is mathematically equivalent to the tunnelling 
of a particle out of a potential well and hence can be treated by the multi-dimensional 
WKB technique. In general, the most probable tunnelling path (MPTP) is curved and is 
difficult to determine. We discuss a model potential for which the curved MPTP can be 
solved analytically. It is shown that the rate of tunnelling calculated along the straight 
path as usually assumed is unreliable. Numerical results of the mean switching time for 
the bistable two-mode laser and comparison with experiments and other theories are also 
discussed. 

1. Introduction 

Although the classic problem of first passage time (FPT) has received much attention 
in many different fields of research (Haken 1979, Arnold and Lefever 1981), there are 
still very few examples in which quantitative comparison can be made between 
experiment and theory. The general Fokker-Planck equation is difficult to solve. In 
most practical cases, the drift coefficients are derivable from a potential and the problem 
reduces to determining the mean escape time or equivalently the rate at which the 
system escapes from the metastable state out of the potential well passing through the 
saddle point of the potential. If one assumes that the quantum effect is negligible and 
that the motion around the saddle point is nearly simple harmonic, the mean escape 
time can be derived (see, e.g., Vineyard 1957). The general expression for the mean 
escape time is a product of the multiplying frequency factor and the dominant exponen- 
tial factor. Since the problem is mathematically the same as the motion of a particle 
in a potential well expressed as a function of the generalised coordinate representing 
the decaying quantity, one can treat it as a tunnelling problem by the WKB technique 
just like quantum particle dynamics. It has been shown (Bender and Wu 1973) that 
the mean escape time from the WKB method again contains a multiplying factor which 
is the normalisation integral and an exponential factor which involves a path integral 
in the exponent. It is therefore necessary to determine the most probable tunnelling 
path (MFTP) before any quantitative result can be obtained. 

The MPTP is in general a curve rather than a straight line; the latter has been assumed 
in most of the existing calculations. A general method has already been developed 
(Banks and Bender 1973) to find the curved MPTP by constructing a multi-dimensional 
WKB approximation in curved space. The first step is to find the thickness of the tube 
surrounding the MPTP and then to determine the MFTP by means of a perturbative 
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method. Since the method is extremely formal, a system of two coupled anharmonic 
oscillators of unequal masses is solved in Banks and Bender (1973) as an illustration. 

In recent years, more rigorous treatment of the tunnelling problem had been 
formulated in terms of path integrals (Callan and Coleman 1977) and instantons 
(Agmon 1979, Simon 1984); it was also recognised (Sethna 1982) that the instanton 
bounce paths follow the most probable escape path of Banks and Bender (1973) and 
Bender and Wu (1973) whose method is what we shall use in the present work. 

In order to apply the method, we first convert the Fokker-Planck equation into an 
equation of motion. Because we are only interested in the long-time effect, this is 
easily done provided the drift coefficients are derivatives of a potential (M-Tehrani 
and Mandel 1978). The resulting Schrodinger-type equation is then solvable by the 
multi-dimensional WKB method. When the drift coefficients are not derivable from a 
potential, an expression for the FPT can be obtained by WKB expansion but in a 
completely different approach (Matkowsky and Schuss 1981). 

In this paper, we discuss the case in which the drift coefficients are derivatives of 
a potential. We first outline the method (Banks and Bender 1973) of tunnelling along 
a curved MFTP in § 2. In § 3, we study a model potential for which the problem can 
be solved analytically. In §4,  we discuss briefly a realistic problem of a bistable 
two-mode laser for which analytical solutions cannot be found. Numerical integration 
along the path specified by the minimum potential is carried out to obtain the mean 
switching time. The validity of this method and comparison with the existing theories 
are discussed. 

2. Tunnelling along curved MPTP 

We consider the two-dimensional Schrodinger equation 

[ -(a2/ax2 + a2/ay2) + VI$ = E+. (1) 

The lowest order WKB approximation gives the wavefunction 

$=Aexp(-[ (V-E) l I2ds)  

where s is the arc length of the path. Suppose that the vector C#J = (x, y )  represents 
the curved MPTP, we can determine it by minimising the path integral in (2) with the 
constraint 

(de$/ds)2= 1. (3) 

Following the procedure given by Banks and Bender (1973), we find the Euler-Lagrange 
equation 

where VV=dV/aC#J. Equation (4) is solved by the perturbation method. The 
unperturbed MPTP is assumed to be a straight line and is formally represented by 
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the vector The derivative of 4, is a constant vector parallel to the straight MPTP, 

+A=d+,/ds. ( 5 )  

For the purpose of perturbation calculation, we set 

and 

4 = + a +  7?+,+T2+2+. . . (6) 

where the perturbation parameter 7 satisfies 1771 < 1. From (3) and (6) we have 

4:,*+;=0 (7) 

which implies that 

where we have taken the constant to be zero without loss of generality. Now we expand 
the potentials V, and VI around the unperturbed path 

Substituting (5) and ( 6 )  into (4), we obtain an equation for V,(+o) 

With the relation (8) we then have 

4, * v v , = o .  (11) 

A second-order differential equation for then follows from (4): 

d vo 
ds 

2( v, - E ) ( s * 4 1 )” + - ( s ) ’ = s * v VI 

where 6 is a constant vector normal to 4;. It may be pointed out here that (12) differs 
from (3.16) of Banks and Bender (1973) by neglecting one term which should vanish 
identically because of (1 1). This vanishing term can be split into four separate terms; 
one of them is kept in their paper so that their equation (4.6) can be transformed to 
an inhomogeneous Legendre equation. 

The rate of transition is, according to Bender and Wu (1973), 

where J is the probability current and S is the boundary of volume V .  Using the WKB 

wavefunction ( 2 )  with proper normalisation, we can express, apart from the slowly 
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varying normalisation factor, 

l- - exp (-2 5; ( V - E)’ / ’  ds) 

which dominates the behaviour of the rate expression. The integral is taken along the 
path of penetration through the barrier region and the integration limits so and s1 are 
the nearby and the distant turning points, respectively. We now proceed to calculate 
(14) up to the second order in 7. We have, from (9) and (1 l ) ,  

v = vo+ 7/ v, + T 2 [  4 2  - v Vo+4( . V)2V0+ 4, * v VI]. (15) 

It can then be shown, after some manipulation of integrals, that 

In r = - 2 { Vo + 7 VI - E 5: 
+ 72[c$2 - V Vo+;(+, V)’V0+ 4, * V ds  

where the integration limits .ria and 5, are the zeros of Vo- E. 

3. Switching between double potential wells 

Consider the model potential written in dimensionless form 

V = -$ (x2+y2)  + ( 1/16a2)(x4+y4+6x2y2) + ( 7/4a2)x2y2 = Vo+ 7Vl  (17) 

where a is a parameter and 171 < 1. As shown in figure 1, this potential has two minima 
at (x,y)=(&,O) and ( x , y ) = ( O , a a )  and one saddle point at (x ,y)= 
( a / ( 2 +  T ) * ’ ~ ,  a / ( 2 +  v ) ” ~ ) .  Examples of such a double well potential can be found, 
for instance, in the movement of defects in solids (Vineyard 1957), the thermally 
activated random processes (Landauer and Swanson 1961), the optical bistability 

0 x ( 2 ” ‘ a  .OI 

Figure 1. Positions of the potential extrema in the xy plane. 
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(Bonifacio et a1 1981) and the bistable two-mode laser (M-Tehrani and Mandel 1978). 
When the perturbation parameter 7 = 0, the MPTP is a straight line joining the two 
minima and is represented by 

+o = (2a - s, s ) / f i =  (a/JZ)(2 - r, r )  

where we have introduced the new variable r = s/a for convenience. Thus 

t$b= d&/ds = ( -1 ,1) / f i  

it then follows from (8) and (19) that 

41 = 4 Q 1 ,  d / J Z  

( 6  41If = dQl/dr 

and the constant vector 6 = ( l , l ) / a .  Hence 

( 6 .  41)f f=  a-' dZq,/dr2. 

We need the potential Vo and VV, along the path and they are given by 

and 

Vo= -Sa 1 2 1  -go- 2 (-4a 2 2  s +4as3-s4)= -aa2+ia2r2(r-2)2 

1 s(2a - s) 
(s, 2a - s) = ar(2 - r)/4. 

4JZa2 
6 - v v  - - (1 , l ) -  

I - f i  

Plugging (21)-(24) into (13), we find 

- + Q L = R  d2Qi dQ 
dr2 d r  

where we have defined 

1 dVo 
Q=2(v0-E)  dr 
R = a2r(2 - r ) / 8 (  Vo- E). 

Since the MPTP is symmetric with respect to the line joining the origin and the saddle 
point, we have 

d d d r l r = l  = 0. (28) 
Furthermore, since the MPTP passes through the saddle point, we have 

Integrating (25) once we obtain 

!!?! dr  = exp ( - 1: Q d r ) 1,' R [ exp ( 1: Q drf)] d r. 

With the boundary condition (29), we can write 

If the energy is very close to the well minimum, namely E i= -a2/4, then the rate 
equation (14) can be derived analytically. Since Q d r  = In( Vo - we find from 
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(26), (30) and (31), after a little algebra, that 

cp1=-tln[r(2-r)]+- [ (5) - 3 
77 

To calculate r, we first note that 

t$l .VV,  = ~ a 2 r ( 2 - r ) c p l .  (33) 
Combining (32) and (33), and substituting in (16), we obtain by direct integration 

It has been found (Wang et a1 1985) that the most probable path is practically the 
same as that characterised by the minimum potential as we shall discuss in 44.  It is 
therefore possible to carry out the integral in (14) numerically by taking the minimum 
of the potential at every point along the path. In figure 2 ,  we plot In r as a function 
of 77 calculated by different methods. It is observed that the assumption of a straight 
path is not at all reliable, but (34) yields quite accurate results. The deviation occurring 
near 171 - 1 is understandable and can be corrected by higher-order corrections. 

-0 .9 -0 .5 0 0.5 0.9 
II 

Figure 2. Comparison of the rate calculated along different paths. The full curve is along 
the path corresponding to minimum potential, the broken curve is from (34) and the dotted 
curve is along the straight path. 

4. Bistability switching of a two-mode laser 

The measured mean switching time of the spontaneous mode switching in a two-mode 
laser seems to be qualitatively accounted for by the one-dimensional FIT calculation 
(Roy et a1 1980) based on the approximation that is valid for large pump parameter 
a. In the large a region, however, the theoretical curve grows too fast as a increases. 
This may be understandable because a is not large under the experimental conditions. 
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It has been shown (M-Tehrani and Mandel 1978) that the Fokker-Planck equation 
describing a two-mode laser can be transformed to a four-dimensional Schrodinger-type 
equation in which the potential energy is 

v q  -1 -+- a2u a2u 
i = l  { ’(ax; a , : ) } + ~ [ ( ~ ) ’ + ( ~ ) ’ ]  (35) 

where 

U = - 2 1 2  U , ( X ~  + y:) -; u ~ ( x : +  y i )  +i[(x: + y:)’+ (x: + y:)’+ 2 5 ( ~ :  + Y:)(X: + y z ) ] .  (36) 
In equation (36), a ,  and a2 stand for the pump parameters of the two modes and 5 
denotes the coupling constant between the two modes. This potential is much more 
complicated than the model potential studied above. An attempt has been made to 
solve the MPTP analytically for this potential (Wang et a1 1986). It turns out that C#J~ 

is expressed as an integral with integrand involving various kinds of incomplete elliptic 
integrals and Jacobi elliptic integrals. A detailed account of this investigation will 
be published elsewhere and here we shall report some of the findings. 

In our numerical study we find that the MPTP, to a good degree of accuracy, is the 
same as the path characterised by the minimum of the function ( V -  E)”’ for 1 s 6s 5 
and in the actual experiment [ = 2 .  This discovery makes it possible for the first time 
to calculate the mean switching time that is valid throughout the whole range of the 
pump parameter. Thus the mean switching time is, according to (13 )  and (14), 

(37) 

where the normalisation integral serves as the multiplying frequency factor and the 
dominant exponential factor is the inverse of the barrier penetration integral. It is 

) T = ( $ * $ dx) exp ( 2 5 ( V - E ) gi’, d s 

4 . 0  I 

i 

1 . 0  

0 1.0 2.0 3.0  
[og,,o 

Figure 3. a dependence of the exponent from WKB method with curved MPTP. 
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found that in the large a limit our numerical results agree completely with the analytical 
large a formula mentioned before. To study the behaviour of T more carefully we 
plot in figure 3 the numerical results of log,,[2( V- E),!,!; ds] against log,, a for several 
values of 5; It is observed that the slope starts with -0.4, increases gradually with 
increasing a, and becomes about unity around a-10 where measurements are 
performed. It does not reach the limiting value of 2 until a b 150 according to our 
computation. Therefore extrapolation of the large a formula to the experimental range 
tends to overestimate the mean switching time. 

To check the method of calculation, we have also computed (Wang e? a1 1986) the 
FFT from the generalised Kramer method (Vineyard 1957, Landauer and Swanson 
1961) by integrating along the path specified by minimum potential. The results are 
completely consistent with the WKB calculation. Finally, we remark that numerical 
integrations along the straight path have also been carried out for both the WKB and 
generalised Kramer method. In both cases the resulting mean switching time grows 
much faster than those from the curved MFTP corresponding to minimum potential. 
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